IRG-I

HARNESSING IN-FIBER FLUID INSTABILITIES FOR SCALABLE AND UNIVERSAL MULTIDIMENSIONAL NANOSPHERE DESIGN, MANUFACTURING, AND APPLICATION



GOALS

The need for scalable processes to produce structured materials on fine scales is well documented. Currently, methods for nanoscale particle production are typically constrained to specific material systems, simple particle architectures, and are applicable over narrow dimensional ranges; these limitations are dictated by process chemistry, growth kinetics, and the omnipresent effects of coarsening and agglomeration. Here we propose to harness a newly discovered nonlinear fiber fluid instability to generate regularly sized nanospheres in an approach that is at once both universal and scalable, age-old yet radically new.

The essence of our process is deceptively simple: We begin with an axially invariant fiber made of multiple materials. Fluid dynamic instabilities are thermally induced in a controllable manner in cylindrical domains internal to the fiber structure. The resulting spheres are generated with an unprecedented level of control over size, architecture, materials composition, and functionality. Moreover the linearly arranged, necklaced spheres are immune to agglomeration – and can be chemically released or alternatively used as part of an in-fiber device. Specifically, we propose to develop thermal fiber drawing from a macroscopic preform into a top-down scalable process for novel nanoparticle generation. This process will enable the production of large quantities of size-controllable nanoparticles consisting of a single or multiple materials combined in predesigned geometries. This process further paves the way to exploring new physics in confined geometries and prescribed length scales, such as the possibility of investigating the boundary between continuum fluid dynamics and quantum electrodynamics that emerges at the nanoscale. The objectives of our multidisciplinary study are twofold: first, to introduce a new materials-agnostic fabrication approach for nanospheres of arbitrary geometry, dimensions, and composition; second, to develop a new paradigm for fundamental fluid-dynamic studies offering a highly controlled environment for the observation of fluid instabilities involving multiple fluids co-flowing in hitherto unobtainable geometries and scales. In concert, these will set the stage for discoveries both fundamental and applied, spanning novel neuronal interface devices, delivery vehicles for pharmaceuticals, and potentially the chemical and electronics industries.

 

PEOPLE

 

Polina Anikeeva
(co-leader)
DMSE

 

Marin Soljačić
(co-leader)
Physics
 

 

Yoel Fink
DMSE

 

John Joannopoulos
Physics

 

Steven Johnson
Mathmatics

 

Ayman Abouraddy
(University of Central Florida)
Optics and Photonics

 

HIGHLIGHTS
2020
A General Framework for Nanoscale Electromagnetism

Structured Multimaterial Filaments for 3D Printing of Optoelectronics

2019
Diode Fibers for Fabric-based Optical Communications

Nanophotonic Particle Simulation and Inverse Design Using Artificial Neural Networks

2018
Hierarchical 3D-printing of Integrated Multifunctional Structures

A New High-efficiency Regime for Gas Phase Terahertz Lasers

2017
Controlled Fragmentation of Multimaterial Fibers Via Polymer Cold-Drawing

Stretchable Spinal Cord Probes Offer New Tools to Study the Nervous System

2016
First Experimental Observation of Weyl Points

Spawning Rings of Exceptional Points out of Dirac Cones

2015
Creating Crystalline Silicon Core Fibers from Aluminum and Glass Preforms

 

PUBLICATIONS

2020
Christensen, T., Loh, C., Picek, S., Jing, L., Fisher, S., Ceperic, V., Joannopoulos, J.D., Soljacic, M., and Jakobovic, D. "Predictive and generative machine learning models for photonic crystals." Nanophonics, 9(13): 4183-4192, SI, October 2020. <DOI: 10.1515/nanoph-2020-0197>

Gonçalves, P. A. D., Christensen, T., Rivera, N., Jauho, A.-P., Mortensen, N. A., and Soljačić, M. “Plasmon–Emitter Interactions at the NanoscaleNature Communications 11, no. 1 (2020): doi:10.1038/s41467-019-13820-z

Prabhu, M., Roques-Carmes, C., Shen, Y.C., Harris, N., Jing, L., Carolan, J., Hamerly, R., Baehr-Jones, T., Hochberg, M., Ceperic, V., Joannopoulos, J.D., Englund, D.R., and Soljačić, M. "Accelerating recurrent sing machines in photonic integrated circuits." Optica, 7(5): 551-558, May 2020. <DOI: 10.1364/OPTICA.386613>

2019
Yang, Y., Zhu, D., Yan, W., Agarwal, A., Zheng, M., Joannopoulos, J. D., Lalanne, P., Christensen, T., Berggren, K. K., and Soljačić, M. “A General Theoretical and Experimental Framework for Nanoscale ElectromagnetismNature 576, no. 7786 (2019): 248–252. doi:10.1038/s41586-019-1803-1

Hu, M., Wang, F., Huo, P., Pan, X., Johnson, S. G., Fink, Y., and Deng, D. “Nanoparticle-Mediated Cavitation via CO2 Laser Impacting on Water: Concentration Effect, Temperature Visualization, and Core-Shell StructuresScientific Reports 9, no. 1 (2019): <doi:10.1038/s41598-019-54531-1>

Rivera, N., Wong, L. J., Joannopoulos, J. D., Soljačić, M., and Kaminer, I. “Light Emission Based on Nanophotonic Vacuum ForcesNature Physics 15, no. 12 (2019): 1284–1289. <doi:10.1038/s41567-019-0672-8>

Yang, Y., Peng, C., Zhu, D., Buljan, H., Joannopoulos, J. D., Zhen, B., and Soljačić, M. “Synthesis and Observation of Non-Abelian Gauge Fields in Real SpaceScience 365, no. 6457 (2019): 1021–1025. doi:10.1126/science.aay3183

Tao, G., Chen, S., Pandey, S. J., Tan, F. A., Ebendorff‐Heidepriem, H., Molinari, M., Abouraddy, A. F., and Gaume, R. M. “A Carbon‐Nanofiber Glass Composite with High Electrical Conductivity” International Journal of Applied Glass Science (2019): <doi:10.1111/ijag.14607>

Chevalier, P., Amirzhan, A., Wang, F., Piccardo, M., Johnson, S. G., Capasso, F., and Everitt, H. O. “Widely Tunable Compact Terahertz Gas LasersScience 366, no. 6467 (2019): 856–860. <doi:10.1126/science.aay8683>

Loke, G., Yan, W., Khudiyev, T., Noel, G., and Fink, Y. “Recent Progress and Perspectives of Thermally Drawn Multimaterial Fiber ElectronicsAdvanced Materials (2019): 1904911. doi:10.1002/adma.201904911

Frank, J. A., Antonini, M.-J., and Anikeeva, P. “Next-Generation Interfaces for Studying Neural FunctionNature Biotechnology 37, no. 9 (2019): 1013–1023. doi:10.1038/s41587-019-0198-8

Cook, J., Tan, F. A., Halawany, A. A., Sincore, A., Shah, L., Abouraddy, A. F., Richardson, M., and Schepler, K. L. “Efficient Coupling of a Quantum Cascade Laser to a Few-Mode Chalcogenide Fiber: ErratumOptics Express 27, no. 21 (2019): 30653. <doi:10.1364/oe.27.030653>

Loke, G., Yuan, R., Rein, M., Khudiyev, T., Jain, Y., Joannopoulos, J., and Fink, Y. “Structured Multimaterial Filaments for 3D Printing of Optoelectronics.” Nature Communications, 10(1): 2019. doi:10.1038/s41467-019-11986-0

Ghebrebrhan, M., Loke, G. Z. J., and Fink, Y. “Fabrication and Measurement of 3D Printed Retroreflective Fibers.” Optical Materials Express, 9(8): 3432, 2019. doi:10.1364/ome.9.003432

Roques-Carmes, C., Kooi, S. E., Yang, Y., Massuda, A., Keathley, P. D., Zaidi, A., Yang, Y., Joannopoulos, J. D., Berggren, K. K., Kaminer, I., and Soljačić, M. “Towards Integrated Tunable All-Silicon Free-Electron Light Sources.” Nature Communications, 10(1), 2019. doi:10.1038/s41467-019-11070-7

Kanik, M.,Orguc, S., Varnavides, G., Kim, J., Benavides, T., Gonzalez, D., Akintilo, T., Tasan, C.C., Chandrakasan, A.P., Fink, Y., and Anikeeva, P. "Strain-programmable fiber-based artificial muscle." Science, 365(6449): 145+, 2019. doi:10.1126/science.aaw2502

Xu, B., Li, M., Wang, F., Johnson, S. G., Fink, Y., and Deng, D. “Filament Formation via the Instability of a Stretching Viscous Sheet: Physical Mechanism, Linear Theory, and Fiber Applications.” Physical Review Fluids, 4(7), 2019.<doi:10.1103/physrevfluids.4.073902>

Shahriari, D., Loke, G., Tafel, I., Park, S., Chiang, P. H., Fink, Y., and Anikeeva, P. “Scalable Fabrication of Porous Microchannel Nerve Guidance Scaffolds with Complex Geometries.” Advanced Materials, 1902021, 2019. <DOI:10.1002/adma.201902021>

Maayani, S., Foy, C., Englund, D., and Fink, Y. “Distributed Quantum Fiber Magnetometry.” Laser & Photonics Reviews, 1900075, 2019. <DOI:10.1002/lpor.201900075>

Park, S., Loke, G., Fink, Y., and Anikeeva, P. “Flexible Fiber-Based Optoelectronics for Neural Interfaces.” Chemical Society Reviews 48:6: 1826–1852, March 2019. <DOI:10.1039/c8cs00710a>

Yuan, R., Nagarajan, M.B., Lee, J., Voldman, J., Doyle, P.S., and Fink, Y. "Designable 3D Microshapes Fabricated at the Intersection of Structured Flow and Optical Fields." Small, 14(50): Article 1803585. <DOI: 10.1002/smll.201803585>

Yang, Y. Zhu, D., Yan, W., Agarwal, A., Zheng, M., Joannopoulos, J.D., Lalanne, P., Christensen, T., Berggren, K.K., and Soljačić, M. "A General Theoretical and Experimental Framework for Nanoscale Electromagnetism." January 2019. <arXiv:1901.03988>

Gonçalves, P.A.D., Christensen, T., Rivera, N., Jauho, A.-P., N., Mortensen, A., and Soljačić, M. "Plasmon-Emitter Interactions at the Nanoscale." 2019. <arXiv:1904.09279>

 

2018
Massuda, A., Roques-Carmes, C., Yang, Y.J., Kooi, S.E., and Yang, Y., Murdia, C., Berggren, K.K., Kaminer, I., Soljačić, M. "Smith-Purcell Radiation from Low-Energy Electrons." ACS Photonics, 5(9): 3513-3518, September 2018. <DOI: 10.1021/acsphotonics.8b00743>

Gao, X., Zhen, B., Soljačić, M., Chen, H., and Hsu, C. W. “Bound States in the Continuum in Fiber Bragg GratingsACS Photonics, 6, no. 11 (2019): 2996–3002. <doi:10.1021/acsphotonics.9b01202>

Yuan, R., Lee, J., Su, H.W., Levy, E., Khudiyev, T., Voldman, J., and Fink, Y. "Microfluidics in structured multimaterial fibers." Proceedings of the National Academy of Sciences of the United States of America, 115(46): E10830-E10838, November 2018. <DOI: 10.1073/pnas.1809459115>

Qian, C., Lin, X., Yang, Y., Gao, F., Shen, Y.C., Lopez, J., Kaminer, I., Zhang, B.L., Li, E.P., Soljačić, M., and Chen, H.S. "Multifrequency superscattering from subwavelength hyperbolic structures." ACS Photonics, 5(4): 1506-1511, April 2018. <DOI: 10.1021/acsphotonics.7b01534>

Peurifoy, J., Shen, Y.C., Jing, L., Yang, Y., Cano-Renteria, F., Delacy, B., Tegmark, M., Joannopoulos, J.D., and Soljačić, M. (2018) Nanophotonic particle simulation and inverse design using artificial neural networks. Physics and Simulation of Optoelectronic Devices XXVI Article (UNSP 1052607).  San Francisco, CA, United States of America.

Lopez, J.J., Ambrosio, A., Dai, S.Y., Huynh, C., Bell, D.C., Lin, X., Rivera, N., Huang, S.X., Ma, Q., Eyhusen, S., Kaminer, I.E., Watanabe, K., Taniguchi, T., Kong, J., Basov, D.N., Jarillo-Herrero, P., and Soljačić, M. "Large photothermal effect in sub-40 nm h-BN nanostructures patterned via high-resolution ion beam." Small, 14(22): Article 1800072, May 2018. <DOI: 10.1002/smll.201800072>

Kilias, A., Canales, A., Froriep, U.P., Park, S., Egert, U., and Anikeeva, P. "Optogenetic entrainment of neural oscillations with hybrid fiber probes." Journal of Neural Engineering, 15(5): Article 056006, October 2018. <DOI: 10.1088/1741-2552/aacdb9>

Yang, Y., Massuda, A., Roques-Carmes, C., Kooi, S.E., Christensen, T., Johnson, S.G., Joannopoulos, J.D., Miller, O.D., Kaminer, I., Soljacic, M. "Maximal spontaneous photon emission and energy loss from free electrons." Nature Physics, 14(9): 894-+, September 2018. <DOI: 10.1038/s41567-018-0180-2>

Rein, M., Favrod, V.D., Hou, C., Khudiyev, T., Stolyarov, A., Cox, J., Chung, C.C., Chhav, C., Ellis, M., Joannopoulos, J., and Fink, Y. "Diode fibres for fabric-based optical communications."Diode fibres for fabric-based optical communications." Nature, 560(7717): 214-+, August 2018. <DOI: 10.1038/s41586-018-0390-x>

Wang, F., Lee, J., Phillips, D. J., Holliday, S. G., Chua, S.-L., Bravo-Abad, J., Joannopoulos, J. D., Soljačić, M., Johnson, S. G., and Everitt, H. O. “A High-Efficiency Regime for Gas-Phase Terahertz Lasers,Proceedings of the National Academy of Sciences, 115(26): 6614–6619, 2018. <doi:10.1073/pnas.1803261115>

Cano-Renteria, F., Tegmark, M., Soljačić, M., Joannopoulos, J. D., Peurifoy, J., Shen, Y., Jing, L., Yang, Y., and Delacy, B. G. “Nanophotonic Particle Simulation and Inverse Design Using Artificial Neural Networks.” Physics and Simulation of Optoelectronic Devices XXVI, 2018. <doi:10.1117/12.2289195>

2017
Chang, C.H., Rivera, N., Joannopoulos, J.D., Soljačić, M., and Kaminer, I. "Constructing "designer atoms" via resonant graphene-induced lamb shifts." ACS Photonics, 4(12): 3098-3105 SI, December 2017. <DOI: 10.1021/acsphotonics.7b00731>

Grena, B., Alayrac, J.B., Levy, E., Stolyarov, A.M., and Joannopoulos, J.D., and Fink, Y. “Thermally-drawn fibers with spatially-selective porous domains.” Nature Communications, 8: Article 364, August 28. DOI: 10.1038/s41467-017-00375-0

Khudiyev, T., Clayton, J., Levy, E., Chocat, N., Gumennik, A., Stolyarov, A.M., Joannopoulos, J. and Fink, Y.  "Electrostrictive microelectromechanical fibres and textiles." Nature Communications, 8: Article 1435, November 2017. DOI:  10.1038/s41467-017-01558-5

Gumennik, A., Levy, E.C., Grena, B., Hou, C., Rein, M., Abouraddy, A.F., and Joannopoulos, J.D., and Fink, Y. “Confined in-fiber solidification and structural control of silicon and silicon-germanium microparticles.” Proceedings of the National Academy of Sciences of the United States of America, 114(28): 7240-7245, July 2017. DOI: 10.1073/pnas.1707778114

Christiansen, M.G., Howe, C.M., Bono, D.C., Perreault, D.J., and Anikeeva, P. “Practical methods for generating alternating magnetic fields for biomedical research.” Review of Scientific Instruments, 88(8): Article 084301, August 2017. DOI: 10.1063/1.4999358

Khudiyev, T., Hou, C., Stolyarov, A.M., and Fink, Y. “Sub-Micrometer Surface-Patterned Ribbon Fibers and Textiles.” Advanced Materials, 29(22): Article 1605868, June 2017. DOI: 10.1002/adma.201605868

Lin, X., Yang, Y., Rivera, N., Lopez, J.J., Shen, Y.C., Kaminer, I., Chen, H.S., Zhang, B.L., Joannopoulos, J.D., and Soljačić, M. “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures.” Proceedings of the National Academy of Sciences of the United States of America, 114(26): 6717-6721, June 2017. DOI: 10.1073/pnas.1701830114

Yang, Y., Miller, O.D., Christensen, T., Joannopoulos, J.D., and Soljačić, M. “Low-loss plasmonic dielectric nanoresonators.” Nano Letters, 17(5): 3238-3245, May 2017. DOI: 10.1021/acs.nanolett.7b00852

Christensen, T., Yan, W., Jauho, AP., Soljačić, M., Mortensen, N.A. “Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material.” Physical Review Letters, 118 (15): Article 157402, April 2017. DOI: 10.1103/PhysRevLett.118.157402

Ilic, O., Kaminer, I., Zhen, B., Miller, O.D., Buljan, H., Soljačić, M. “Topologically enabled optical nanomotors.” Science Advances, 3(6): Article e1602738, June 2017. DOI: 10.1126/sciadv.1602738

 

2016
Koppes, R.A., Park, S., Hood, T., Jia, X., Poorheravi, N.A., Achyuta, A.H., Fink, Y., and Anikeeva, P. “Thermally drawn fibers as nerve guidance scaffolds.” Biomaterials, 81:27-35, December 2015. DOI: 10.1016/j.biomaterials.2015.11.063*

Zhen, B., Hsu, C.W., Igarashi, Y., Lu, L., Kaminer, I., Pick, A., Chua, S.L., Joannopoulos, J.D., and Soljačić, M. “Spawning rings of exceptional points out of Dirac cones.” Nature, 525(7569): 354-358, September 2015. DOI: 10.1038/nature14889

Skirlo, S.A., Lu, L., Igarashi, Y.C., Yan, Q.H., Joannopoulos, J., and Soljačić, M. “Experimental observation of large chern numbers in photonic crystals.” Physical Review Letters, 115(25): Article 253901, December 2015. DOI: 10.1103/PhysRevLett.115.253901

Bravo-Abad, J., Lu, L., Fu, L., Buljan, H., and Soljačić, M. “Weyl points in photonic-crystal superlattices.” 2D Materials, 2(3): Article 034013, September 2015. DOI: 10.1088/2053-1583/2/3/034013

Ilic, O., Kaminer, I., Lahini, Y., Buljan, H., and Soljačić, M  “Exploiting optical asymmetry for controlled guiding of particles with light.” ACS Photonics, 3(2): 197−202, January 2016. DOI: 10.1021/acsphotonics.5b00605

Wang, P., Lu, L., and Bertoldi, K. “Topological phononic cystals with one-way elastic edge waves.” Physical Review Letters, 115(10): Article 104302, September 2015. DOI: 10.1103/PhysRevLett.115.104302

 

2015
Zhen, B., Hsu, C.W., Igarashi, Y., Lu, L., Kaminer, I., Pick, A., Chua, S.L., Joannopoulos, J.D., and Soljačić, M. “Spawning rings of exceptional points out of Dirac cones.” Nature, 525(7569): 354-358, September 2015. DOI: 10.1038/nature14889

Lu, L., Wang, Z.Y., Ye, D.X., Ran, L.X., Fu, L., Joannopoulos, J.D., and Soljačić, M. “Experimental observation of Weyl points.” Science, 349(6248): 622-624, August 2015. DOI: 10.1126/science.aaa9273

Skirlo, S.A., Lu, L., Igarashi, Y.C., Yan, Q.H., Joannopoulos, J., and Soljačić, M. “Experimental observation of large chern numbers in photonic crystals.” Physical Review Letters, 115(25): Article 253901, December 2015. DOI: 10.1103/PhysRevLett.115.253901

Bravo-Abad, J., Lu, L., Fu, L., Buljan, H., and Soljačić, M. “Weyl points in photonic-crystal superlattices.” 2D Materials, 2(3): Article 034013, September 2015. DOI: 10.1088/2053-1583/2/3/034013

Wang, P., Lu, L., and Bertoldi, K. “Topological phononic cystals with one-way elastic edge waves.” Physical Review Letters, 115(10): Article 104302, September 2015. DOI: 10.1103/PhysRevLett.115.104302