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Since the early days of quantum mechanics, quantum vacuum 
fluctuations have been a constant source of fascination. The 
non-zero energy density of the vacuum gives rise to a wide 

variety of important physical effects that continue to be subjects 
of intense theoretical and experimental research. In the case of 
the quantized electromagnetic field, key examples of these effects 
include spontaneous emission1, Lamb shifts2, Casimir(–Polder) and 
van der Waals forces3–5, quantum friction6, the dynamical Casimir 
effect7,8 and the Unruh effect9–11.

A paradigm that has taken hold in recent years is control over 
these vacuum effects by either nanostructuring of the electro-
magnetic modes of optical materials12 or using nanoconfined 
electromagnetic modes in materials with negative permittivity or 
permeability13,14. This paradigm works because the electromagnetic 
modes control the spatial and spectral properties of the electro-
magnetic vacuum. A well-studied example of these concepts is the 
Purcell effect15, in which the modification of the local density of 
states of the electromagnetic field alters light emission by stationary 
or moving atoms16,17 and free electrons18–22. Another example would 
be the control of Casimir forces and related phenomena, such as 
near-field radiative heat transfer, which are attributed to fluctuat-
ing electromagnetic fields near optical materials. These effects are 
very strong when two optical materials are a few nanometres away 
from each other, due to the very large field fluctuations associated 
with the nanoscale. The large field fluctuations motivate the strong 
theoretical23–27 and experimental5,28–30 push to observe these effects 
using nanoscale gaps between materials.

Controlling the electromagnetic vacuum ceases to be simple 
at high frequencies, typically beyond the ultraviolet (UV) range31. 
This is a direct consequence of the fact that in almost all known 
materials, the permittivity approaches that of vacuum at these high 
frequencies. As a result, the generation of high-frequency radiation 

(hard UV through gamma rays) from emitters relies on the presence 
of static or dynamic external fields, as in light-generation processes 
used in synchrotrons, laser undulators, and free-electron lasers32–36. 
Alternatively, the radiation can come from the weak dielectric 
response of materials at very high frequencies, as in parametric 
X-ray generation37. The very weak material response at very high 
frequencies seems to preclude using ideas from nanophotonics and 
materials physics to influence high-frequency radiation.

Here, we show how electromagnetic vacuum fluctuations at 
infrared (IR) and visible frequencies near and inside materials can 
be used as a means of controlling light emission at very high fre-
quencies, such as X-rays. The mechanism that we propose to exert 
such control is a two-quantum process involving the spontaneous 
emission of a photon and a polariton by an energetic free electron 
(Fig. 1). Although two-quantum (spontaneous) emission processes 
are second-order processes in quantum electrodynamics (QED) and 
are thus considered very weak, the large strength of vacuum forces 
in the nanoscale vicinity of materials nevertheless leads to a strong 
per-electron power emitted into high-frequency radiation. In fact, 
we find that the radiated power is comparable with that emitted by 
an equal-energy electron moving in an externally applied magnetic 
field of strength on the order of 1 T. Due to the high spatial confine-
ment of the emitted polariton, the intensity of the emitted light is 
substantial at higher frequencies than in many known light sources, 
even when modest electron energies are used in our scheme.

For example, in comparison with current X-ray free-electron 
lasers and synchrotrons that utilize GeV-energy electrons to pro-
duce few-kiloelectronvolt X-rays, an X-ray output of 5 keV can 
be achieved with electron kinetic energies of about 5 MeV and 
gamma-ray output of 50 MeV can be achieved with electron kinetic 
energies of around 500 MeV. The emission is broadband, poten-
tially enabling applications in probing physics from UV to hard 
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X-rays (for few-megaelectronvolt electrons attainable with a table-
top radiofrequency gun) and gamma rays (with further electron 
acceleration). Despite the output being at such high frequencies, 
the spatial and temporal properties of the emitted photons can be 
tailored by controlling the material permittivity at IR frequencies. 
We illustrate these concepts in tunable nanophotonic materials of 
current interest such as graphene, a dynamically tunable plasmonic 
material known to support highly confined and low-loss plasmons 
at infrared frequencies38–42. Our results may be enabling concepts 
for novel passive and compact sources of tunable radiation from 
nanometre to femtometre wavelengths. Our results also suggest a 
novel ‘nonlinearity’ mediated by relativistic electrons that couples 
low-frequency (IR or optical) fields to high-frequency (UV, X-ray or 
gamma ray) fields despite the well-known lack of electromagnetic 
response at such high frequencies. Our findings may also yield a 
new way to study the quantized electromagnetic vacuum: through 
high-frequency light emitted into the far field by a relativistic probe.

Spontaneous emission of a photon–polariton pair
Consider a beam of electrons travelling over a photonic structure 
that permits strong coupling of light and material polarization (Fig. 
1a). Examples of such a structure include all-dielectric nanostruc-
tures or materials with resonances associated with plasmon-, pho-
non-, exciton- or magnon-polaritons. For brevity, we will refer to 
any mode arising from non-trivial optical response as a polariton 
mode, even those in all-dielectric structures, as the non-trivial opti-
cal response is concomitant with strong coupling between light and 
material polarization. The electrons are affected by electromagnetic 
field fluctuations that arise from the quantum fluctuations of polar-
ization currents inside the material. Although this fluctuating field 
has zero mean, it has a non-zero variance that leads to the possibility 
of far-field photon emission by the electron through spontaneous 
emission. In this spontaneous emission process, a far-field photon 
and a photonic mode of the nanostructure (a polariton mode) are 
simultaneously emitted. We henceforth refer to this two-quantum 
emission as a photon–polariton pair emission. The probability of 
two-quantum emission processes scales as the square of the fine-
structure constant (α ≈ 1/137), which led to a long delay between 
prediction and the first direct observation in the specific case of 
two-photon emission from atoms43,44. However, two-quantum 
emission can be strongly enhanced by nearby polaritonic media 
in atomic or low-energy emitters based on bound charges, mak-
ing these two-polariton emission processes strong or potentially 
even dominant45–48 over single-photon decay channels. Two-photon 
emission by free electrons was suggested by luminaries such as Ilya 
Frank in his 1958 Nobel lecture on the Cherenkov effect49, and was 
considered as a second-order Cherenkov effect50,51.

Figure 1 summarizes the discussion above by illustrating the 
two complementary paradigms that can be used to explain the 
phenomena we study here. The first is the fluctuational electrody-
namics paradigm (Fig. 1a) where a free electron radiates as a result 
of interactions with fluctuating fields in a nanophotonic vacuum 
(derived and applied in Supplementary Sections 3 and 4). The sec-
ond is the QED paradigm (Fig. 1b), which describes the radiation as 
part of a second-order quantum process in which a relativistic elec-
tron spontaneously emits one photon and one polariton (derived 
in Supplementary Section 5 via both scalar and Dirac QED, which 
agree well with electron energies below 1 GeV). We show that the 
QED approach leads to the same results. We encourage the reader to 
see the Methods for a summary of the essentials of the derivation of 
the spectrum and intensity of photon–polariton pair emission from 
fluctuational electrodynamics.

Impact of polariton confinement on the emission
We find that in photon–polariton pair emission by an electron 

with speed v = cβ moving along direction ̂v, where c is the speed 
of light, the photon and polariton are kinematically related (see 
Supplementary Section 4). In particular, a photon emitted of fre-
quency ω′ along direction n̂ is kinematically related to a polariton 
emitted of frequency ωq in direction q̂ by

ω ω
β ω θ

β θ
=

−

−
′

n( )cos 1

1 cos
(1)q

q q

where n(ωq) = qc/ωq is the effective mode index of the polariton 
(with q the magnitude of the polariton wavevector), θ = ̂ ⋅ ̂q vcos q , 
and θ = ̂ ⋅ ̂n vcos . Note that the frequency is independent of the azi-
muthal angle φ of the photon as defined in Fig. 1a. Equation (1) 
reveals two ways by which the photon frequency can be greatly 
enhanced. The first way is by minimizing the denominator, which 
is achieved by using high-energy electrons and collecting photons 
emitted in the direction of electron motion (θ = 0), as can be seen 
by the fact that (1 − βcosθ)−1 ≈ 2γ2 when θ = 0 and β ≈ 1. The second 
way is by making use of an optical medium that supports polari-
ton modes of simultaneously high wavevector and high effective  
mode indices.

The numerator in equation (1) reveals a fundamental difference 
between the process studied here and a potential process in which a 
photon is emitted and a polariton is absorbed. In this latter case, the 
numerator of equation (1) would change to vq|| + ω (with = ⋅ ̂∥q q v, see 
Supplementary Section 4), implying that strong enhancement of radi-
ated frequency can occur even when q|| = 0. For a photon–polariton  
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Fig. 1 | Light emission induced by nanophotonic vacuum fluctuations and spontaneous emission of a photon–polariton pair. a, Schematic illustrating a 
beam of electrons travelling in the near field of a nanophotonic structure. The vacuum fields lead to random modulations of the trajectory with a non-zero 
variance. These modulations lead in turn to a Doppler shift of the vacuum fluctuations into a higher frequency in the electron’s rest frame, resulting in 

photon output at even higher frequencies. The ratio of the output photon frequency to polariton frequency scales as ( )E

mc

2

2
, where E is the energy of the 

electron, resulting in enormous frequency up-conversion factors for relativistic electrons. b, The complementary description in QED: a second-order two-
quantum (spontaneous) emission process involving a mode of the structure (denoted polariton) and a high-energy photon.
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pair emission process, emission is kinematically forbidden for q|| 
< ω/v. This implies that high-frequency modes are not necessarily 
associated with the generation of high-frequency photons in photon–
polariton pair emission. Instead, high mode indices are necessary.

The importance of high mode indices in generating high-fre-
quency photons is summarized in Fig. 2, where we plot the relation-
ship between the emitted photon frequency and the emitted polariton 
frequency for different optical materials, in the scenario where both 
the polariton and photon are emitted in the forward direction by an 
electron moving at a speed of 0.99c. We consider plasmonic thin films 
of gold and silver of varying thickness; two-dimensional plasmonic 
materials such as graphene, with varying levels of doping; and thin 
films of phonon polaritonic materials such as silicon carbide. As can be 
seen from Fig. 2, despite the widely different frequencies of the emitted 
polaritons in these widely different materials, the emitted photons can 
be at hard X-ray frequencies (frequencies in excess of 5 keV). To sum-
marize this figure: high mode momentum (provided it comes with a 
high mode index) leads to high-frequency photons.

To highlight further the interplay of electron velocity and polari-
ton mode index on the output photon frequency, we present another 
example. For graphene, with Fermi energy 0.5 eV, the forward emis-
sion of a plasmon of 0.5 eV frequency will be concomitant with the 
forward emission of a photon of frequency 110 eV for an electron with 
velocity 0.7c (as from a transmission electron microscope), a photon 
of frequency 6.7 keV for an electron with velocity 0.995c (as from a 
radiofrequency gun), and a photon of frequency 675 keV for an elec-
tron with velocity 0.99995c (from a linear accelerator). Meanwhile, 
if the plasmon is replaced by a polariton of frequency 100 eV but a 
mode index of 1.01, then for an electron of velocity 0.7c, it is kinemati-
cally forbidden to emit a photon. For an electron of velocity 0.995c, 
the outgoing photon has a frequency of 0.099 keV, and for an electron 
of velocity 0.99995c, the outgoing photon has a frequency of 20 keV.

Strong high-frequency radiation from vacuum fluctuations
Having discussed the kinematics of photon–polariton pair emission, 
we now move to analyse the angular and frequency correlations of 

the emitted photon–polariton pairs, as well as the overall strength 
of the process. To make the discussion concrete, we consider this 
process when the emitted polariton is a plasmon in graphene, a 
dynamically tunable plasmonic material known to support plas-
mons that simultaneously have high mode index and low-enough 
losses to be well-defined excitations. Graphene is a very attractive 
platform for realizing the effect we describe in this Article. Besides 
having highly confined plasmons that propagate for reasonably long 
distances, it is also tunable, has a very high surface-to-bulk ratio and 
can be produced in suspended form, allowing the minimization of 
background effects. That said, we show (in Supplementary Fig. 4) 
that other materials, such as thin films of gold, can give effects of a 
similar magnitude, as could be anticipated from the utility of con-
ventional plasmonic materials in fields such as near-field radiative 
heat transfer. The low damping also could allow the intriguing pos-
sibility that the emitted polariton could re-interact with the electron 
beam, leading to feedback and radiation enhancement.

In particular, we consider the photon–polariton pair emission 
process for a fast electron moving parallel to a sheet of doped gra-
phene, a distance x0 away from the surface of the graphene. We con-
sider the graphene to be free-standing, although the conclusions 
of Figs. 3 and 4 are not qualitatively changed when a transparent 
substrate is introduced. Note that for simple exposition, we model 
graphene via a Drude model with an infinite Drude relaxation time. 
A realistic Drude relaxation time has little effect on the emitted 
power (see Supplementary Fig. 2). We also consider the influence 
of interband transitions modelled through the local and non-local 
conductivity derived from the random-phase approximation. The 
output power in those cases remains similar to the Drude case.

Spectral and angular correlations between the emitted photon 
and polariton. In photon–polariton pair emission, the fast electron 
spontaneously emits a photon and a plasmon-polariton, whose spa-
tial and spectral distributions are shown in Fig. 3. In Fig. 3a (upper 
semicircle), we show the radiated photon energy per unit time (pho-
ton power) per unit plasmon frequency, plasmon angle and photon 
angle, with fixed photon angle (θ = 0). The electron is taken to have 
a velocity of 0.99c. Integrating over these variables gives the total 
emitted power. The (polar) plot shows this differential power as a 
function of the plasmon frequency ωq (radial direction) and plas-
mon angle θq (angular direction). We represent the spectrum this 
way to show how the emission intensity depends on the kinematical 
properties of the individual photon–plasmon pairs.

Figure 3a highlights two main features of photon–polariton pair 
emission. First, the plasmons are preferentially emitted into the gra-
phene sheet in a direction perpendicular to the direction of electron 
motion. This results from the polarization of a highly confined plas-
mon, which is half in the direction of plasmon propagation and half 
perpendicular to the graphene sheet. For a plasmon emitted parallel 
to the direction of electron motion, half of the plasmon polarization 
is in the direction of electron motion, which for relativistic electrons 
has very little impact on the modulation of the electron trajectory. 
This component is thus incapable of modulating the electron trajec-
tory and makes little contribution to the emitted power. Meanwhile, 
for a plasmon emitted perpendicular to the electron motion, every 
component of the polarization is transverse to the electron’s unper-
turbed trajectory, and thus effectively modulates the trajectory. The 
second feature is that very little photon emission corresponds to 
emission of plasmons of frequency less than 0.25 eV or more than 
1 eV. The lack of low-frequency plasmons results from the low den-
sity of states of the plasmons at low frequency. The lack of high-
frequency plasmons results from the fact that their evanescent tails 
become substantially smaller than x0, rendering the electron insen-
sitive to those plasmon modes. The lower semicircle shows the pho-
ton frequencies that correspond to a particular plasmon angle and 
plasmon frequency. We see clearly that the emission of plasmons 
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Fig. 2 | Influence of optical materials on the photon emission spectrum in 
photon–polariton pair emission. Radiated photon frequency of equation 
(1) for photons emitted along θ = 0, and polaritons emitted along θq = 0 
(both emitted forwards). The photon frequency is shown as a function of 
polariton frequencies for plasmons in (Drude) gold and silver with different 
thicknesses, (Drude) graphene with different doping levels, and phonon 
polaritons in silicon carbide. Also shown are contours corresponding to 
a constant index of refraction n = 1.5, 2 and 4. Despite the very different 
frequencies of plasmons in graphene, phonon polaritons in silicon carbide, 
and plasmons in silver and gold, all of these materials are capable of being 
used for generation of hard X-ray photons.
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at perpendicular angles corresponds to low photon energies, which 
follows from equation (1). As a result of the continuum of plasmon 
angles and energies in the sheet geometry, the photon emission is 
quite broadband, spanning from the soft UV to hard X-ray frequen-
cies, similar to synchrotron light.

In Fig. 3b, we elaborate further on the correlated nature of the 
photon–polariton pair emission by showing the photon power 
emitted per unit plasmon frequency and photon frequency, which 
represents the spectral intensity of plasmon–photon correlations. 
Integrating over these variables gives the total emitted power. From 
Fig. 3b, we notice first that the emission of a plasmon with frequen-
cies between 0 and 1 eV is correlated with photon emission from 0 to 
nearly 10 keV. Higher frequency photons are correlated with higher 
frequency plasmons, as expected from equation (1). For a photon 
of any frequency, it is most correlated with a plasmon that has a 
substantial density of states, but is also not evanescently decoupled 
from the electron, which in the case of Fig. 3b occurs for plasmons 
of frequency around 0.5 eV.

For any plasmon frequency, photons have a slight preference to 
be emitted at lower frequencies (most of the emission is neverthe-
less in between 1 and 5 keV). This can be understood from the fact 
that plasmons are preferentially emitted near θq = π/2, as shown in 
Fig. 3a. Supplementary Figure 1 shows the same overall phenomena 
as in Fig. 3 but for different Fermi energy in graphene (and differ-
ent x0), which results in a different plasmon dispersion and thus a 
change in the angular and spectral properties of the emission. This 
shows that the emitted X-rays can be tuned by changing the modal 
properties of photons in the IR, whether it be the dispersion relation 
or polarization properties.

Total radiated power in photon–polariton pair emission. We 
now evaluate the total power emitted in photon–polariton pair 
emission. A key result is the total emitted power integrated over 
all photon and plasmon properties, plotted in Fig. 4a as a func-
tion of electron energy and distance between the electron and 
the surface. The emitted power increases sharply with increasing 
electron energy (as γ2, with γ being the ratio between the elec-
tron energy and its rest mass energy) and decreasing distance 
to the surface (as − ∕x0

7 2). This − ∕x0
7 2 dependence arises from the 

Drude model in the quasi-electrostatic limit, and breaks down for  

distances on the order below 1 nm, when effects of quantum non-
locality become strong, and above about a micrometre, where 
retardation becomes signficant.

As a numerical example, consider a scenario in which a 
500 MeV electron travels within 5 nm from the surface of gra-
phene doped to Fermi energy 0.5 eV. A typical value of power 
emitted in the photon component of photon–polariton pair 
emission in this distance range is about 1.3 nW (for example, for 
x0 = 3 nm). As a point of comparison, we also consider a scenario 
in which a 500 MeV electron emits synchrotron radiation as a 
result of travelling in a circular orbit in a 1 T magnetic field. The 
power emitted through synchrotron radiation is about 15 nW. 
The closeness of these two powers is a surprising observation 
given that in the former scenario, vacuum fluctuations drive the 
radiation, whereas in the latter scenario, a strong applied mag-
netic field drives the radiation. Although we referred to a specific 
electron energy, this was solely for concreteness, as our finding 
applies at any electron energy, since the emitted powers of pho-
ton–polariton pair emission and synchrotron radiation both scale 
in the same manner with electron energy (as γ2). We encourage 
the reader to see Supplementary Section 2 to see more details 
about the characteristic photon emission rates, methods to scale 
up the output brightness and comparison to other miniaturized 
light sources. Regarding other miniaturized light sources, partic-
ularly based on strongly pumping a near-field of a photonic struc-
ture, we found that the photon–polariton pair emission, although 
passive, can lead to as much integrated power as in the situation 
in which the electron radiates as a result of scattering from an 
externally pumped near-field containing thousands of quanta.

We now quantitatively explain why the magnitude of this vac-
uum-induced emission process can be comparable to processes that 
rely on substantial external driving fields, such as magnetic fields 
of 1 T. Our explanation is based on an analytical formula for total 
emitted power P that we obtain in the limit where photon–polariton 
pair emission is dominated by highly confined polariton modes. In 
this limit, the power is given by:
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where 〈0|E2|0〉 is the expectation value of the quantized electric field 
associated with plasmonic zero-point fluctuations. Note that we 
calculate the fluctuations resulting from the medium and remove 
the contribution of free-space fluctuations to the squared electric 
field, as they give zero contribution due to energy–momentum 
conservation. A detailed derivation of this expression is shown in 
Supplementary Section 5. Equation (2) is simply the Larmor for-
mula from classical electrodynamics for a charged particle of accel-
eration a given in this case by =

γ
. . .a eE

m
r m s , with the root-mean squared 

(r.m.s) electric field defined by ≡ ∣ ∣. . .E E0 0r m s
2 . To see how this 

explains the high radiated power in photon–polariton pair emis-
sion, consider Fig. 4b, which shows the r.m.s. plasmonic field as a 
function of distance from the graphene surface. The magnitude of 
the r.m.s. fluctuations 5 nm from the surface is about 50 MV m–1, 
which induces electron acceleration magnitudes that one expects to 
find for an electron in a magnetic field of 0.2 T in a synchrotron. 
Similarly, the magnitude of the quantum r.m.s. field 1 nm away from 
the surface is about 300 MV m–1, which induces electron accelera-
tion magnitudes that one expects to find for an electron in a mag-
netic field of 1 T. More generally, the power radiated by an electron 
undergoing synchrotron radiation in a uniform magnetic field B is 

= γ
πϵ

P e B
m c6

4 2 2

0
2

, revealing that the power radiated from photon–polari-
ton pair emission (equation (2)) is comparable with that from syn-
chrotron radiation when E2  and cB in the respective processes 
are comparable. These examples emphasize the strong fields that 
arise from vacuum fluctuations, and explain the high emitted power 
we find in Fig. 4a. To conclude this section, we note that equation 
(2) also allows us to immediately understand the ∕x0

7 2 dependence 
of the power mentioned earlier. In particular, the expectation value 
of the squared electric field operator associated with Drude plas-
mons is given by ∫ ~

ħω

ϵπ
− − ∕xeq q qxd

2 2
2

0
7 2q

2

0

0  for ω ~ qq .

Discussion
One potential method of experimentally demonstrating photon–
polariton pair emission would be to send a beam of electrons close 
to a nanostructure, and at grazing incidence, in a set-up capable of 
detecting very high-frequency radiation (for example, with energy 
dispersive X-ray detectors52), making sure to account for competing 
bremsstrahlung by electrons that penetrate the material. Yet another 
meaningful experimental demonstration would use time-synchro-
nized measurements of coincidences to measure spatiotemporal 

correlations between the X-ray photon and the emitted polariton. 
The relevant set-up depends on the energy scale. For example, elec-
trons could be accelerated to 200 keV kinetic energy in an electron 
microscope. MeV electron energies could be achieved by a radio-
frequency gun or with potential advances in dielectric laser accel-
eration53. GeV electron energies could be achieved with a linear 
accelerator or potentially with plasma wakefield acceleration54.

An alternative experimental demonstration could involve the 
detection—through electron energy-loss spectroscopy (EELS)—of 
anomalously high energy losses in the electrons that pass a small 
distance away from the surface at grazing incidence. This would 
require one to be able to differentiate X-ray losses from core loss 
transitions in the materials near the surface, which is possible 
due to the tunability of the photon spectrum (because the EELS 
peaks from photon–polariton pair emission shift by varying accel-
eration voltage or nanophotonic geometry as per equation (1)). In 
Supplementary Section 2, we briefly discuss methods to minimize 
background effects that also produce X-rays associated with elec-
trons colliding into the sample.

The concept developed here applies to, and is enriched by, the con-
sideration of alternative materials and structures. Examples include 
thin films and quasi-two-dimensional systems (‘transdimensional’ 
systems55) of plasmonic materials such as gold, silver and titanium 
nitride56, as well as more general polaritonic materials and metasur-
faces. One can consider optimizing various radiation characteris-
tics through optimizing the nanophotonic structure. For example, a 
structure that could make the radiation more monochromatic would 
enhance the spectral density, quality and brightness of the X-ray source. 
Better monochromaticity could potentially be achieved by structuring 
a material into a nanograting, such that the X-ray frequency is selected 
by reciprocal lattice vectors of the grating. The goal of designing 
radiation sources through our formalism will benefit from the great 
computational strides that have been made in calculating fluctuation 
spectra near complicated arrangements and geometries of optical 
media25,27,57. The framework advanced here can also be extended to 
other charge distributions using results from classical electrodynamics 
to accommodate radiation from more complicated systems of charges 
such as moving dipoles or bunched electrons (including periodically 
bunched electrons, which are typical in free-electron laser settings). 
Beyond the possibilities of applying this concept to compact and tun-
able sources of high-frequency light, the ability to control spontane-
ous free-electron emission at arbitrarily high frequencies may also 
ultimately lead to the ability to create synthetic active nonlinearities 
at X-ray58–60 and perhaps gamma-ray frequencies controlled by now 
accessible nanopatterning of photonic systems.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41567-019-0672-8.
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Methods
In this section we present an overview of the fluctuational electrodynamics 
formalism used to calculate the spectrum of photon–polariton pair emission. 
Further details are provided in Supplementary Sections 3 and 4. We emphasize 
that this formalism, for parameters considered in the main text, gives precisely the 
same result as a calculation based on the direct calculation of the emission based 
on second-order time-dependent perturbation theory (shown in Supplementary 
Section 5).

From the point of view of fluctuational electrodynamics, it is sufficient here 
to consider a classical electron travelling initially in a straight line with velocity 
v = cβ and position r(t) = r0 + vt, with r0 being the position taken at an arbitrarily 
chosen origin of time t = 0. In the presence of an external modulating electric 
field, this electron will experience an acceleration that leads to subsequent 
radiation, as prescribed by the Liénard–Wiechert potentials, the essential  
aspects of which are summarized in the Supplementary Information.  
The radiated energy is quadratic in the modulating field. In the spirit of  
the discussion of Fig. 1a, we identify the modulating field with that associated 
with the quantum fluctuations of the nanophotonic vacuum at thermal 
equilibrium. The average power radiated by the electron is governed by the 
correlation function between different components of the fluctuating electric 
field at different positions and different times. This correlation function is  
〈Ei(r, t)Ej(r′, t′)〉, where r and r′ are different points in space, t and t′ are 
different points in time, Ei is the ith component of the quantized electric field 
operator, and 〈〉 denotes an ensemble average assuming thermal equilibrium. 
From the quantum theory of the macroscopic electromagnetic field in  
an arbitrary dielectric medium, 〈Ei(r, t)Ej(r′, t′)〉, at zero temperature,  
is given by61–63:

∫ħ
πϵ

ω ω ω′ ′ω
∞

− −

c
d G t t er rIm ( ( ), ( ), ) (3)ij

i t t

0
2

0

2 ( )

with ϵ0 the permittivity of free space, and ħ the reduced Planck constant. The non-
zero temperature generalization is presented in the Supplementary Information. 
In this equation, the integration variable ω can be interpreted as the angular 
frequency of a polariton in the nanophotonic structure. In practice, the integral 
in equation (3) is well-approximated by restricting the range of integration to the 
set of frequencies where the local density of states of the polaritons are high. Gij 
is the dyadic Green’s function of the nanophotonic structure and is dependent on 
material resonances and material geometry.

To find the energy radiated per unit photon frequency ω′ and photon solid 
angle Ω into the far-field, dU/dω′dΩ, we take the an ensemble average of the 
radiated power over realizations of the modulating field, thus plugging in equation 
(3) for the ensemble averaged modulating field (a detailed derivation is given 
in Supplementary Section 3). The result of this fluctuational electrodynamics 
calculation, at zero temperature, is:

where γ = (1 − β2)−1/2 is the electron Lorentz factor, θ is the angle of the emitted 
photon with respect to the direction of electron motion, and t and t′ are times that 
are integrated over the electron’s unperturbed linear trajectory. Additionally, we 
have defined the matrix T, whose components β θ δ β≡ − − ̂ − ̂T n n( cos 1) ( )ij ij i i j, with 
δij a Kronecker delta, n̂ a unit vector along the direction of photon emission, and 

=γ γ⊥
∣∣( )E E ,

E
2  where ⊥ (||) denote directions perpendicular (parallel) to v. The only 

assumptions made in writing equation (4) are that the deviations of the electron 
motion from a straight-line trajectory are fairly small, and that the fluctuating fields 
are quasi-electrostatic in nature, meaning that effects of the magnetic fields are 
negligible compared to those of the electric fields, which holds for highly confined 
near fields associated with polaritons in dielectrics and conductors. We note that 
the assumption of zero temperature is well-respected even at room temperature, as 
for the IR polariton frequencies we consider here, ≪

ħω
1kT , with k being Boltzmann’s 

constant. However, at higher temperatures, the emission will be enhanced due 
to contributions from thermal near-field fluctuations. Equation (4) is the main 
formal result of this work, and it is applied in the main text. We comment that in 
the fluctuational electrodynamics paradigm, the effect we describe can be phrased 
as follows: fluctuating polarization currents in a medium lead to fluctuating 
acceleration and thus fluctuating dipole moments of an electron, leading to 
subsequent high-frequency radiation, due to the relativistic speed of the electron. 
In these terms, the physics is like that of the general Casimir–Polder effect (which 
has the van der Waals force as its near-field limit), where vacuum fluctuations 
lead to a force on a bound electron in an atom or molecule. Unlike other often 
considered Casimir phenomena, this vacuum force acts on a relativistic free 
electron and oscillates it, leading to the radiation emission.

Data availability
The data represented in Figs. 2–4 are available as Supplementary information files. 
All other data that support the plots within this paper and other findings of this 
study are available from the corresponding author on reasonable request.
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