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ABSTRACT: Optical fibers typically confine light through
total internal reflection or through photonic band gaps. Here,
we show that light can be perfectly guided in optical fibers
through a different mechanism based on bound states in the
continuum (BICs). In fibers with periodic Bragg gratings, we
predict bona fide BICs in pure-polarization modes as well as
quasi-BICs in hybrid-polarization modes. These BICs and
quasi-BICs are topologically protected and exist robustly
without the need for fine structural tuning. With a coupled-
wave framework that is especially accurate for gratings with
small index contrasts, we analytically prove that these BICs persist even with the very small index contrasts that are common in
realistic fiber Bragg gratings. The suppression of radiation loss arises from the destructive interference between a weakly
radiating local mode and a strongly radiating one. This finding opens the possibility of guiding light with BICs in optical fibers
and their applications in fiber sensors, filters, and high-power fiber lasers.
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In recent years, a new paradigm for confining light emerged
based on the concepts of bound states in the continuum

(BICs)1 that originated in quantum mechanics.1−3 A BIC can
achieve perfect confinement even in the presence of radiating
modes in the free space. While conventional guided modes
exist across a continuous range of frequencies and propagation
constants, a BIC generally exists only at an isolated frequency
at an isolated propagation constant.4 Such unusual modal
selectivity has many promising uses.1 However, despite
extensive research on BICs in the past few years,1,4−14 their
existence in optical fibers15−18the most common medium
for optical confinementremains in doubt. Certain transverse
patterning of photonic crystal fibers can significantly suppress
leakage without a band gap,19,10−21 but there exist residual
radiation losses even for a perfect structure. Fibers with
separable transverse permittivity profiles have been suggested
for fiber BICs,22 but they require exact permittivity values that
cannot be realized in practice. Therefore, the large optical-fiber
community has not been able to reap the benefits of BICs.
Certain periodic structures are known to exhibit

BICs.4,7,8,10−14,21,23−38 While periodic Bragg gratings in fibers
can be readily realized through laser pulses or by writing
interference fringes onto a photosensitive core,39−46 the grating
index contrast Δn is typically at 10−6−10−2.39,41,44 The small
index contrasts become a roadblock as conventional simulation

methods for studying BICs cannot resolve the fine differences
in quality factor for modes in such low-contrast structures.
Here, we show, for the first time, that bona fide BICs exist in

optical fibers with Bragg gratings, despite the vanishingly small
index contrasts. With customized numerical simulations and an
analytical coupled-wave analysis, we show that these BICs exist
robustly without fine structural tuning or index tuning, and
that they persist when the index contrast goes down. In
addition, we also find quasi-BICs where the radiation loss can
be suppressed by orders of magnitude. Our results indicate that
BICs readily exist in a wide range of fiber Bragg grating
structures, with great promise for experimental realizations and
new applications.

■ RIGOROUS COUPLED-WAVE ANALYSIS
FORMALISM

We consider a step-index fiber with periodic index modulations
in the core [Figure 1a]. The core has radius r and is
surrounded by a cladding with relative permittivity εd. The
index modulation has periodicity a. For concreteness, we
consider the modulation to consist of alternating dielectric
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layers with thicknesses d and a − d at relative permittivities ε2
and ε1; our formalism is general and also treats other periodic
profiles. The permittivity contrast is defined as Δε ≡ (ε2 − ε1)/
ε1, and the index contrast is Δn ≡ (n2 − n1)/n1 ≈ Δε/2. The
cladding’s outer surface is not considered since the field is
exponentially small there for the BICs of interest. Given the
cylindrical symmetry, the fiber modes have exp(imϕ) angular
dependence with distinct angular momentum indices m, where
ϕ is the azimuthal angle. We start by considering fiber modes
with m = 0, for which the TE (H = Hzz ̂ + Hρρ̂, E = Eϕϕ̂) and
TM (E = Ezz ̂ + Eρρ̂, H = Hϕϕ̂) polarizations decouple,

17 and
each mode couples only to radiation channels in one
polarization. We label these pure-polarization modes as TEn
and TMn where n is the radial mode index. The hybrid-
polarization modes with m ≠ 0 will be considered later.
The low index contrast and extremely high quality factor of

the leaky fiber modes post a challenge for the often-used finite-
difference or finite-element numerical methods. To accurately
describe the leaky fiber modes, we employ the Fourier modal
method, also called rigorous coupled-wave analysis47,48

(RCWA); RCWA describes the radiating fields analytically, is
particularly efficient when the contrast of the periodic index
modulation is small, and can readily handle very large quality

factors. Here, we briefly summarize the RCWA formalism and
our implementation. We look for solutions of the full vectorial
Maxwell’s equations with an exp(−iωt) time dependence and
satisfying an outgoing boundary condition at ρ → ∞; they are
called quasinormal modes49 or simply resonances, and we will
also refer to them as the eigenmodes of the fiber Bragg grating.
The angular frequency ω is generally complex-valued (ω = ωr
+ iωi) with a negative imaginary part that corresponds to a
decay in time because of radiation loss. The lifetime of the
resonance is quantified by its quality factor, Q = −ωr/(2ωi).
Fields of the TEn and TMn modes inside and outside the core
(where the relative permittivity ε is a function of z only) satisfy

ε ρ
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where k0 = ω/c, and c is the vacuum speed of light. Inside the
core (ρ < r), ε is periodic with ε(z + a) = ε(z). Outside the
core (ρ > r), ε = εd is a constant. By solving eq 1 inside and
outside the core and imposing an outgoing boundary condition
outside, we can write the general expression of a TE
eigenmode as
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where kz is the Bloch wave number (the axial propagation
constant), and {up} is a set of local modes in the core satisfying
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and up(z) = up(z + a). Here, γp is the radial propagation
constant of the local mode inside the core, and

κ ε π= − +k k p a( 2 / )p d z0
2 2 is the radial propagation

constant outside. J0 and H0 are the zeroth Bessel function
and Hankel function of the first kind. As the operator on the
left-hand side of eq 3 is Hermitian, γp

2 is real, and {up} and
{exp(i2πpz/a)} each forms a complete basis for functions
periodic in z. We index the local modes, p = 0, ±1, ±2, ..., by
the primary Fourier component of up. The coefficients Cp and
Tp are to be chosen to satisfy continuity across the core-
cladding interface. Taking a real-valued propagation constant
kz, we numerically solve eq 3 in the Fourier basis for up and γp

2

and then impose continuity of Hz and Eϕ at ρ = r via eq 2 to
obtain the complex frequency ω = ωr+ iωi of the eigenmode
and its field profile. In the following, we label the resulting TE
modes as TEn

(q), where q is the main Fourier component, and n
is the radial index. The same method works for TM modes by
working with Ez in eq 1. The only approximation of this
method is a truncation of terms in the Fourier basis, and we
check that the result converges rapidly with an increasing
number of terms. This method remains robust when the index
contrast is small. In fact, since the different terms in the
summation are coupled through the periodic index modu-
lation, smaller contrast means weaker coupling and fewer terms
to keep; we will take advantage of this property to develop a
two-term approximation below.

Figure 1. Bound state in the continuum (BIC) in fiber Bragg gratings.
(a) Schematic of a fiber Bragg grating considered here. The fiber core
is cylindrically symmetric, periodic in the z direction with periodicity
a, and surrounded by a cladding with relative permittivity εd. (b) Band
structure and (c) quality factor of the TE1

(−1) eigenmode. The
cladding has index nd = 1.444. The core has index ε = 1.4551 ,
radius r = 3.3a, with permittivity contrast Δε ≡ (ε2 − ε1)/ε1 = 10−2;
Δn = 5 × 10−3. The quality factor diverges at kz ≈ 0.126(2π/a), where
the leaky mode turns into a BIC. The gray shaded region in part b
indicates the frequency range where there is one radiation channel in
the continuum, namely, π ε ω ε| − | > > | |k a c k c2 / / /z d r z d . In this
region of continuum, only −1st Fourier Component is radiative. The
inset of part b shows a zoom-in close to the BIC. The blue dotted
curve is the solution of = −0 1 described in the Two-Wave
Coupling Analysis section; its intersection with the TE1

(−1) band is the
location of the BIC, marked with a red plus. The solid curve and the
circles in part c are from full RCWA solution (including 11 Fourier
terms) and the two-wave approximation, respectively. (d) Mode
profile and (e) intensities of the main Fourier components of the BIC.
The |F−2|2 and |F0|2 curves are multiplied by 106 and 104 to be more
visible.
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We use high-contrast gratings as a test case for our RCWA
implementation; such a case is similar to the chain-of-disks
structure recently studied in refs 14, 36, and 37. Figure S1 and
Section I in the Supporting Information compare results from
our RCWA implementation with those from a commercial
finite-element frequency-domain software for the case ε2 =
2.16, ε1 = εd = 1; the perfect agreement indicates that our
implementation is valid.
Note that, instead of looking for complex-frequency

solutions at real propagation constants kz, one can also look
for complex-kz solutions at real frequencies. We show in
Section II and Figure S2 in the Supporting Information that,
for the high-Q modes of interest here, these two approaches
are equivalent under a simple conversion.

■ BOUND STATES IN THE CONTINUUM IN FIBER
BRAGG GRATINGS

We now consider a realistic fiber Bragg grating with a grating
contrast of Δε = 10−2 (Δn = 5 × 10−3). The fiber parameters
are chosen to be comparable to those of a commercial fiber
(Fibercore SM1500P). Here, we examine the TE1

(−1) band,
whose dispersion calculated from RCWA is shown in Figure
1b. At frequencies above the light line, ω ε> | |k c/r z d , the
eigenmodes couple to the continuum of free-space modes in
the cladding and are generally leaky with finite quality factors.
However, we find that the quality factor diverges to infinity at a
discrete propagation constant kz ≈ 0.126 × 2π/a, where the
leaky resonance turns into a lossless BIC [Figure 1c]. The field
profile of the BIC [Figure 1d] exhibits exponential decay
outside the fiber core, with no outward propagation.
The disappearance of radiation can be quantified by the

Fourier components Fp(ρ) of the field profile, defined via
EΦ(ρ, z) = eikzz∑p[Fp(ρ) exp(i2πpz/a)] and shown in Figure
1e. The zeroth Fourier component F0 is the one that carries
outgoing radiation into the cladding. For this BIC, we observe
that F0 is nonzero inside the fiber core, indicating that there are
interior fields that cannot be confined by total internal
reflection. However, F0 vanishes outside the core and thus
does not carry outgoing radiation. This disappearance of
radiation results because, at the core-cladding interface (ρ = r),
multiple local modes up in the fiber core destructively interfere
to completely cancel the zeroth Fourier component, as we can
see more clearly in the next section.
We note that BICs may also arise through separability due to

symmetry1 as can be seen at kz = 0 in Figure 1c; more details
are given in Figure S3. For such BICs, F0 is zero both inside
and outside the fiber core because of symmetry. These
symmetry-protected BICs have zero group velocity and do not
propagate along the fiber.

■ TWO-WAVE COUPLING ANALYSIS
The low grating contrast suggests that we can understand the
leaky resonance and the BIC based on modes of a
homogeneous fiber without grating. The dispersion of the
TE modes for a homogeneous fiber is given by17
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where γ ε π= − +k k p a( 2 / )p c z0, 0
2 2 , and εc is the relative

permittivity of the core. The solutions of eq 4 are plotted in
Figure 2a,b. Here, the Fourier index p of each band TEn

(p)

corresponds to band folding in the reduced-zone scheme as we
impose an artificial periodicity a. In this homogeneous case,
each band contains a single Fourier component with μp(z) =
ei(2πp/a)z, and there is no coupling between bands. Fiber modes
wi th f requency above the unfo lded l ight l ine
(ω π ε> | + |k p a c2 / /r z d ) are leaky and radiate strongly, as
can be seen from their Q factors [Figure 2b]. Those below the
unfolded light line are index guided and do not radiate. In
Figure 2 we illustrate using a fiber without cladding (εd = 1)
and with periodicity a = r so that the relevant fiber modes are
easier to see in the band structure.
The periodic index modulation couples the different Fourier

components. Modes above the light line that were guided in
the homogeneous fiber can now radiate by coupling to the
leaky modes with p = 0, analogous to the guided resonances in
photonic crystal slabs.50 Because of the low index modulation,
the dominant Fourier component F−1 of the TE1

(−1) band only
couples appreciably to the neighboring components F0 and
F−2; the other components are orders of magnitude smaller.
Among these three central components, F−2 has the smallest
weight [as shown in Figure 1e] and does not contribute to
radiation. Away from the other bands (which may carry other
Fourier components), there are no other components in

Figure 2. Illustration of the two-wave coupling analysis. (a, b) Modes
of a homogeneous fiber with dielectric ε1 = ε2 ≡ εc = 2.12 in εd = 1.
(a) Band structure of the TE modes with m = 0. By artificially setting
a period of a = r along the z direction, the dispersion curves are folded
into the Brillouin zone. Solid and dashed curves are TE1

(q) and TE2
(q)

modes with different Fourier indices q. The gray shaded area marks
the radiation continuum with one leaky channel. (b) Quality factor Q
of the leaky fiber modes. The TE1

(−1) band is not shown as it has
infinite Q in the homogeneous fiber. (c, d) Dispersion curves in the
presence of a low-contrast grating, which couples the TEz

(0) and
TE1

(−1) bands. (c) Band structure and (d) quality factors of the TE1
(−1)

eigenmodes. The blue, green, and orange solid curves are two-wave
approximations with the grating permittivity contrast Δε being 10−2,
10−3, and 10−4, respectively, and the colored triangles are full RCWA
solutions including 11 Fourier orders. The inset of part c is a zoom-in
close to the BICs, and the dotted curves are the solutions of

= −0 1.
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TE1
(−1). Therefore, we expect that a two-wave approximation,

keeping only the F0 and F−1 components in RCWA, will suffice
in describing the leaky resonances and the propagating BICs of
interest.
When only the F0 and F−1 Fourier components are kept, the

eigenmode’s continuity of Hz and Eϕ at the core-cladding
interface (ρ = r) is expressed as (see Section III in the
Supporting Information for derivation)
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w h e r e γ γ γ≜ ′ [ ]J r J r( )/ ( )p p p p0 0 a n d

κ κ κ≜ ′ [ ]H r H r( )/ ( )p p p p0 0 . The dimensionless coefficient σ

≜ k0
2εΔ/(γ0,−1

2 − γ0,0
2) couples the two bands TEn

(0) and
TEn′

(−1), with εΔ being the first-order Fourier coefficient of the
core index profile ε(z); for the alternating-index grating here,
εΔ = ε1Δ(d/a) sinc(d/a). Away from the Brillouin zone edge,
γ0

2 ≈ γ0,0
2 − σk0

2εΔ, γ−1
2 ≈ γ0,−1

2 + σk0
2εΔ.

Combining eqs 5 and 6, we find that nonzero solutions exist
when

σ− − + − − =− − − −( )( ) ( )( ) 00 0 1 1 0 1 1 0
2

(7)

which is the dispersion relation that yields the complex-valued
frequencies of the eigenmodes on the TEn

(0) and TEn′
(−1) bands.

When σ → 0, eq 7 reduces to eq 4. Figure 2c,d shows the
TE1

(−1) solution of eq 7 for three different grating permittivity
contrasts (Δε = 10−2, 10−3, 10−4) in blue, green, and orange
solid curves, which agree quantitatively with the full RCWA
solutions (shown in triangles). Discrepancy can only be
observed very close to kz = 0, where the TE1

(−1) band hybridizes
with the TE1

(1) band and acquires an additional F1 Fourier
component. The corresponding solution for the example in
Figure 1 is plotted as blue circles in Figure 1c, again showing
excellent agreement.
This two-wave coupling analysis also clarifies how the local

modes in the fiber core interfere to suppress radiation in the
combined eigenmode. In particular, eqs 5 and 6 show that the
radiation amplitude T0 is given by T0 = C0 + σC−1 or

σ= + − −T C C0 0 0 0 1 1 (from HZ and Eϕ, respectively). In
both expressions, the two terms on the right-hand side are the
two constituent local modes of the fiber core evaluated at the
core-cladding interface. While neither term is zero, the
superposition of the two terms can be small or even zero
through destructive interference. Figure S3 in the Supporting
Information further illustrates this concept with a decom-
position of the field profile. Destructive interference is also the
cause of BICs in the coupled-resonances model of Friedrich
and Wintgen.1,3,51−55 We emphasize, however, that we did not
adapt the Friedrich−Wintgen model here; we solve the full
vectorial Maxwell’s equations, and the only approximation
made is a controlled truncation of Fourier terms.
The two-wave coupling analysis also yields a simple

analytical prediction for the locations of the BICs. Equations
5 and 6 show that = − −− −T C/ ( )/( )0 0 1 0 1 0 for an
eigenmode. Therefore, the above-mentioned destructive
interference can completely suppress radiation (T0 = 0) and

lead to a BIC when =−1 0 and ≠−1 0. Inserting this
condition into eq 7, we find that a BIC is the simultaneous
solution of two equations:

= =− − −,0 1 1 1 (8)

Importantly, note that both equations have solutions at real-
valued frequencies; the second one =− −1 1 is essentially
the homogeneous-fiber dispersion [eq 4 except for a minor
difference between γ−1 and γ0,−1 that is negligible at low
contrast]. Therefore, the two sets of solution curves can
intersect at real-valued frequencies corresponding to the BICs.
The solution of = −0 1 is plotted in blue dashed curves in
Figures 1b and 2c. Indeed, its intersection with the
homogeneous-fiber dispersion gives the BICs marked by red
pluses.
Being at the intersection of two curves, the BIC is robust

under small parameter changes of the system (which will only
shift the curves). This is an example of a 1D topological defect
(with one radiation amplitude that crosses zero), analogous to
the 2D topological defects in systems with two radiation
channels.10,12,28,31,32

The topological protection is powerful but does not tell us
whether a BIC can persist in the vanishing-contrast limit, since
a BIC can disappear by annihilating with another BIC or by
moving underneath the light line. However, here we know that
the BICs of interest do persist in such limit: for vanishingly
small index contrasts (Δε → 0, γp → γ0,p), the solutions of eq 8
approach a set of fixed points, as can be seen in Figure 2c.
Therefore, we now have an analytic proof that, for small index
contrasts, the BICs approach fixed locations in the band
structure and do not vanish.

■ TIME-DOMAIN SIMULATIONS

In time domain, the suppression of radiation manifests as an
absence of decay with time after the mode is excited by near-
field sources. Here, we explicitly show such temporal responses
using finite-difference time-domain (FDTD) simulations.56,57

Ring sources with frequency ωr and Bloch wavenumber kz of
the modes of interest are placed in each unit cell of the grating.
We turn off the sources at time t0 and continue to observe the
evolution of field intensity at a location inside the fiber core.
Figure 3 shows the result for three modes on the TE1

(−1) band

Figure 3. Temporal responses of TE1
(−1) modes under a step-source

excitation. Inset shows the short-time evolution of the normalized
intensity in linear scale; the source is switched off at t = t0 = 400(a/c).
The main plot shows the long-time evolution of the intensity in dB.
Black dashed lines are predictions exp(2ωit) from the two-wave
coupling theory. The system is the same as the Δε = 10−2 case in
Figure 2c.
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with different kz from the Δε = 10−2 case in Figure 2c,d. The
two finite-Q resonances decay exponentially with time after the
source is turned off. Meanwhile, no attenuation is visible for
the mode at the expected location of the BIC, kz = 0.17 × (2π/
a) and ωr = 0.66 × (2πc/a). In Figure 3b, we superimpose the
expected time dependences exp(2ωit) with ωi from the
preceding two-wave approximation; they fully agree with the
time-domain simulation results.

■ HYBRID-POLARIZATION EIGENMODES AND
QUASI-BICS

Having established the existence of BICs in the TE
eigenmodes, we now extend our analysis to modes of the
other polarizations. For the TM modes with m = 0 (for which
E = Ezz ̂ + Eρρ̂, H = Hϕϕ̂), Ez in the cladding (ρ > r) is
expressed as Ez = eikz

z∑pTp,TMe
i(2πp/a)zH0(κpρ)/H0(κpr), similar

to Hz in eq 2. When the angular momentum index m is
nonzero, the two polarizations are coupled, and there are two
sets of radiation channels characterized by Tp,TM and Tp,TE. For
HE11

(−1) here, the relative radiation strengths are STE = μ0|
T0,TE|

2/(ε0nd
2) and STM = |T0,TM|

2 (see Section IV in the
Supporting Information). The quality factors of the first few
bands of eigenmodes, including TE1

(−1), TM1
(−1), HE21

(−1), and
the fundamental mode HE11

(−1), are shown in Figure 4a for the
structure considered in Figure 1. Note that even though
TE1

(−1), TM1
(−1), and HE21

(−1) are degenerate in the absence of
the grating (together they make up the LP11 group17), they
take on different radiation losses when the grating is
introduced. In the TM1

(−1) band, two BICs can be readily
identified; the mechanism is the same as the BICs in TE1

(−1)

since there is only one radiation channel. The sharp variation
of the quality factor near kz = 0 (wavelength λ ≈ and) is further
detailed in Figure S4.
The hybrid-polarization eigenmodes HE11

(−1) and HE21
(−1)

couple to two radiation channels (in TE and TM polar-
izations). As shown in Figure 4b for the HE11

(−1) mode, each of
the two radiation powers STE and STM crosses zero at discrete
frequencies and propagation constants. Generically they vanish
at different points, so there is no bona fide BIC in these hybrid-
polarization eigenmodes. However, since T0,TE is the dominant
radiation channel, the quality factor reaches local maxima near
the zeros of T0,TE, forming quasi-BICs where the quality factor
is enhanced by almost 2 orders of magnitude. Despite the finite
quality factors, such quasi-BICs can also be very useful for
applications.1,19−21,55,58−60

■ CONCLUSION AND DISCUSSION
We have shown that BICs and quasi-BICs exist in realistic fiber
Bragg gratings with low index-modulation contrasts. An
analytical proof was provided through a two-wave coupling
analysis we developed. The BICs arise from the coupling
between a high-Q-band and a low-Q-band, and they persist in
the limit of vanishingly small index contrasts.
Such fiber BICs and quasi-BICs have distinct properties that

can enable new avenues of applications. While a fiber Bragg
grating operating near the Bragg wavelength exhibits narrow-
band reflection, one that operates near the BIC or quasi-BIC
wavelength exhibits narrowband transmission instead. As such,
the BICs and quasi-BICs can naturally serve as in-line band-
pass filters. The BIC wavelength and quality factor depend on
environmental factors, which can be tailored and optimized for
different remote sensing applications. The unique modal
selectivity of BICs and quasi-BICs can be used as a Q-spoiling
mechanism for the single-mode operation of fiber lasers. The
wide availability of optical fibers and the ease of writing Bragg
gratings on them will ease experimental realizations and
facilitate such applications.
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